Critérios de divisibilidade
Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios de divisibilidade.
Divisibilidade por 2
Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par.
Exemplos:1) 5040 é divisível por 2, pois termina em 0.
2) 237 não é divisível por 2, pois não é um número par.
2) 237 não é divisível por 2, pois não é um número par.
Divisibilidade por 3
Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3.
Exemplo:234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3.
Divisibilidade por 4
Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4.
Exemplo:1800 é divisível por 4, pois termina em 00.
4116 é divisível por 4, pois 16 é divisível por 4.
1324 é divisível por 4, pois 24 é divisível por 4.
3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4.
4116 é divisível por 4, pois 16 é divisível por 4.
1324 é divisível por 4, pois 24 é divisível por 4.
3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4.
Divisibilidade por 5
Um número natural é divisível por 5 quando ele termina em 0 ou 5.
Exemplos:1) 55 é divisível por 5, pois termina em 5.
2) 90 é divisível por 5, pois termina em 0.
3) 87 não é divisível por 5, pois não termina em 0 nem em 5.
2) 90 é divisível por 5, pois termina em 0.
3) 87 não é divisível por 5, pois não termina em 0 nem em 5.
Divisibilidade por 6
Um número é divisível por 6 quando é divisível por 2 e por 3.
Exemplos:1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6).
2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12).
3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3).
4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2).
2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12).
3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3).
4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2).
Divisibilidade por 8
Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8.
Exemplos:1) 7000 é divisível por 8, pois termina em 000.
2) 56104 é divisível por 8, pois 104 é divisível por 8.
3) 61112 é divisível por 8, pois 112 é divisível por 8.
4) 78164 não é divisível por 8, pois 164 não é divisível por 8.
2) 56104 é divisível por 8, pois 104 é divisível por 8.
3) 61112 é divisível por 8, pois 112 é divisível por 8.
4) 78164 não é divisível por 8, pois 164 não é divisível por 8.
Divisibilidade por 9
Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9.
Exemplo:2871 é divisível por 9, pois a soma de seus algarismos é igual a 2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por 9.
Divisibilidade por 10
Um número natural é divisível por 10 quando ele termina em 0.
Exemplos:
1) 4150 é divisível por 10, pois termina em 0.
2) 2106 não é divisível por 10, pois não termina em 0.
1) 4150 é divisível por 10, pois termina em 0.
2) 2106 não é divisível por 10, pois não termina em 0.
Divisibilidade por 11
Um número é divisível por 11 quando a diferença entre as somas dos valores absolutos dos algarismos de ordem ímpar e a dos de ordem par é divisível por 11.
O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª ordem, o das centenas de 3ª ordem, e assim sucessivamente.
Exemplos:
1) 87549 Si (soma das ordens ímpares) = 9+5+8 = 22
Sp (soma das ordens pares) = 4+7 = 11
Si-Sp = 22-11 = 11
Como 11 é divisível por 11, então o número 87549 é divisível por 11.
1) 87549 Si (soma das ordens ímpares) = 9+5+8 = 22
Sp (soma das ordens pares) = 4+7 = 11
Si-Sp = 22-11 = 11
Como 11 é divisível por 11, então o número 87549 é divisível por 11.
2) 439087 Si (soma das ordens ímpares) = 7+0+3 = 10
Sp (soma das ordens pares) = 8+9+4 = 21
Si-Sp = 10-21
Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: 10+11 = 21. Então temos a subtração 21-21 = 0.
Como zero é divisível por 11, o número 439087 é divisível por 11.
Sp (soma das ordens pares) = 8+9+4 = 21
Si-Sp = 10-21
Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: 10+11 = 21. Então temos a subtração 21-21 = 0.
Como zero é divisível por 11, o número 439087 é divisível por 11.
Divisibilidade por 12
Um número é divisível por 12 quando é divisível por 3 e por 4.
Exemplos:1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20).
2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4).
3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).
2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4).
3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).
Divisibilidade por 15
Um número é divisível por 15 quando é divisível por 3 e por 5.
Exemplos:1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5).
2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5).
3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3).
2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5).
3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3).
Divisibilidade por 25
Um número é divisível por 25 quando os dois algarismos finais forem 00, 25, 50 ou 75.
Exemplos:200, 525, 850 e 975 são divisíveis por 25.
Números Primos
Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo.Exemplos:
1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo.
2) 17 tem apenas os divisores 1 e 17, portanto 17 é um número primo.
3) 10 tem os divisores 1, 2, 5 e 10, portanto 10 não é um número primo.
Observações:
=> 1 não é um número primo, porque ele tem apenas um divisor que é ele mesmo.
=> 2 é o único número primo que é par.
Os números que têm mais de dois divisores são chamados números compostos.
Exemplo: 15 tem mais de dois divisores => 15 é um número composto.
- Reconhecimento de um número primo
=> ou uma divisão com resto zero e neste caso o número não é primo,
=> ou uma divisão com quociente menor que o divisor e o resto diferente de zero. Neste caso o número é primo.
Exemplos:
1) O número 161:
- não é par, portanto não é divisível por 2;
- 1+6+1 = 8, portanto não é divisível por 3;
- não termina em 0 nem em 5, portanto não é divisível por 5;
- por 7: 161 / 7 = 23, com resto zero, logo 161 é divisível por 7, e portanto não é um número primo.
- não é par, portanto não é divisível por 2;
- 1+1+3 = 5, portanto não é divisível por 3;
- não termina em 0 nem em 5, portanto não é divisível por 5;
- por 7: 113 / 7 = 16, com resto 1. O quociente (16) ainda é maior que o divisor (7).
- por 11: 113 / 11 = 10, com resto 3. O quociente (10) é menor que o divisor (11), e além disso o resto é diferente de zero (o resto vale 3), portanto 113 é um número primo.
Decomposição em fatores primos
Todo número natural, maior que 1, pode ser decomposto num produto de dois ou mais fatores.Decomposição do número 24 num produto:
24 = 4 x 6
24 = 2 x 2 x 6
24 = 2 x 2 x 2 x 3 = 23 x 3
No produto 2 x 2 x 2 x 3 todos os fatores são primos.
Chamamos de fatoração de 24 a decomposição de 24 num produto de fatores primos. Então a fatoração de 24 é 23 x 3.
De um modo geral, chamamos de fatoração de um número natural, maior que 1, a sua decomposição num produto de fatores primos. |
- Regra prática para a fatoração
1º) Dividimos o número pelo seu menor divisor primo;2º) a seguir, dividimos o quociente obtido pelo menor divisor primo desse quociente e assim sucessivamente até obter o quociente 1. A figura ao lado mostra a fatoração do número 630. |
630 = 2 x 32 x 5 x 7.
Determinação dos divisores de um número
Na prática determinamos todos os divisores de um número utilizando os seus fatores primos.Vamos determinar, por exemplo, os divisores de 90:
1º) decompomos o número em fatores primos;2º) traçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número; | |
3º) multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo; | |
4º) os divisores já obtidos não precisam ser repetidos. |
Portanto os divisores de 90 são 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90.
Máximo Divisor Comum
Dois números naturais sempre têm divisores comuns. Por exemplo: os divisores comuns de 12 e 18 são 1,2,3 e 6. Dentre eles, 6 é o maior. Então chamamos o 6 de máximo divisor comum de 12 e 18 e indicamos m.d.c.(12,18) = 6.
O maior divisor comum de dois ou mais números é chamado de máximo divisor comum desses números. Usamos a abreviação m.d.c. |
Alguns exemplos:
mdc (6,12) = 6
mdc (12,20) = 4
mdc (20,24) = 4
mdc (12,20,24) = 4
mdc (6,12,15) = 3
mdc (6,12) = 6
mdc (12,20) = 4
mdc (20,24) = 4
mdc (12,20,24) = 4
mdc (6,12,15) = 3
- CÁLCULO DO M.D.C.
Um modo de calcular o m.d.c. de dois ou mais números é utilizar a decomposição desses números em fatores primos.
1) decompomos os números em fatores primos;
2) o m.d.c. é o produto dos fatores primos comuns.
2) o m.d.c. é o produto dos fatores primos comuns.
Acompanhe o cálculo do m.d.c. entre 36 e 90:
36 = 2 x 2 x 3 x 3
90 = 2 x 3 x 3 x 5
36 = 2 x 2 x 3 x 3
90 = 2 x 3 x 3 x 5
O m.d.c. é o produto dos fatores primos comuns => m.d.c.(36,90) = 2 x 3 x 3
Portanto m.d.c.(36,90) = 18.
Portanto m.d.c.(36,90) = 18.
Escrevendo a fatoração do número na forma de potência temos:
36 = 22 x 32
90 = 2 x 32 x5
Portanto m.d.c.(36,90) = 2 x 32 = 18.
36 = 22 x 32
90 = 2 x 32 x5
Portanto m.d.c.(36,90) = 2 x 32 = 18.
O m.d.c. de dois ou mais números, quando fatorados, é o produto dos fatores comuns a eles, cada um elevado ao menor expoente. |
- CÁLCULO DO M.D.C. PELO PROCESSO DAS DIVISÕES SUCESSIVAS
Nesse processo efetuamos várias divisões até chegar a uma divisão exata. O divisor desta divisão é o m.d.c. Acompanhe o cálculo do m.d.c.(48,30).
Regra prática:
1º) dividimos o número maior pelo número menor;
48 / 30 = 1 (com resto 18)
48 / 30 = 1 (com resto 18)
2º) dividimos o divisor 30, que é divisor da divisão anterior, por 18, que é o resto da divisão anterior, e assim sucessivamente;
30 / 18 = 1 (com resto 12)
30 / 18 = 1 (com resto 12)
18 / 12 = 1 (com resto 6)
12 / 6 = 2 (com resto zero - divisão exata)
3º) O divisor da divisão exata é 6. Então m.d.c.(48,30) = 6.
- NÚMEROS PRIMOS ENTRE SI
Dois ou mais números são primos entre si quando o máximo divisor comum desses números é 1. |
Exemplos:
Os números 35 e 24 são números primos entre si, pois mdc (35,24) = 1.
Os números 35 e 21 não são números primos entre si, pois mdc (35,21) = 7.
Os números 35 e 24 são números primos entre si, pois mdc (35,24) = 1.
Os números 35 e 21 não são números primos entre si, pois mdc (35,21) = 7.
- PROPRIEDADE DO M.D.C.
Dentre os números 6, 18 e 30, o número 6 é divisor dos outros dois. Neste caso, 6 é o m.d.c.(6,18,30). Observe:
6 = 2 x 3
18 = 2 x 32
30 = 2 x 3 x 5
Portanto m.d.c.(6,18,30) = 6
18 = 2 x 32
30 = 2 x 3 x 5
Portanto m.d.c.(6,18,30) = 6
Dados dois ou mais números, se um deles é divisor de todos os outros, então ele é o m.d.c. dos números dados. |
Mínimo Múltiplo Comum
- MÚLTIPLO DE UM NÚMERO NATURAL
Como 24 é divisível por 3 dizemos que 24 é múltiplo de 3.
24 também é múltiplo de 1, 2, 3, 4, 6, 8, 12 e 24.
24 também é múltiplo de 1, 2, 3, 4, 6, 8, 12 e 24.
Se um número é divisível por outro, diferente de zero, então dizemos que ele é múltiplo desse outro. |
Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais.
Exemplo: os múltiplos de 7 são:
7x0 , 7x1, 7x2 , 7x3 , 7x4 , ... = 0 , 7 , 14 , 21 , 28 , ...
7x0 , 7x1, 7x2 , 7x3 , 7x4 , ... = 0 , 7 , 14 , 21 , 28 , ...
Observações importantes:
1) Um número tem infinitos múltiplos
2) Zero é múltiplo de qualquer número natural
1) Um número tem infinitos múltiplos
2) Zero é múltiplo de qualquer número natural
- MÍNIMO MÚLTIPLO COMUM (M.M.C.)
Dois ou mais números sempre têm múltiplos comuns a eles.
Vamos achar os múltiplos comuns de 4 e 6:
Múltiplos de 6: 0, 6, 12, 18, 24, 30,...
Múltiplos de 4: 0, 4, 8, 12, 16, 20, 24,...
Múltiplos comuns de 4 e 6: 0, 12, 24,...
Múltiplos de 6: 0, 6, 12, 18, 24, 30,...
Múltiplos de 4: 0, 4, 8, 12, 16, 20, 24,...
Múltiplos comuns de 4 e 6: 0, 12, 24,...
Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6.
O menor múltiplo comum de dois ou mais números, diferente de zero, é chamado de mínimo múltiplo comum desses números. Usamos a abreviação m.m.c. |
- CÁLCULO DO M.M.C.
Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30:
1º) decompomos os números em fatores primos
2º) o m.m.c. é o produto dos fatores primos comuns e não-comuns:
2º) o m.m.c. é o produto dos fatores primos comuns e não-comuns:
12 = 2 x 2 x 3
30 = 2 x 3 x 5 m.m.c (12,30) = 2 x 2 x 3 x 5
30 = 2 x 3 x 5 m.m.c (12,30) = 2 x 2 x 3 x 5
Escrevendo a fatoração dos números na forma de potência, temos:
12 = 22 x 3
30 = 2 x 3 x 5
m.m.c (12,30) = 22 x 3 x 5
12 = 22 x 3
30 = 2 x 3 x 5
m.m.c (12,30) = 22 x 3 x 5
O m.m.c. de dois ou mais números, quando fatorados, é o produto dos fatores comuns e não-comuns a eles, cada um elevado ao maior expoente. |
- PROCESSO DA DECOMPOSIÇÃO SIMULTÂNEA
Neste processo decompomos todos os números ao mesmo tempo, num dispositivo como mostra a figura ao lado. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números. Ao lado vemos o cálculo do m.m.c.(15,24,60) Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120 |
- PROPRIEDADE DO M.M.C.
Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe:
m.m.c.(3,6,30) = 2 x 3 x 5 = 30
Dados dois ou mais números, se um deles é múltiplo de todos os outros, então ele é o m.m.c. dos números dados. |
Considerando os números 4 e 15, ques são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe:
m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60
Dados dois números primos entre si, o m.m.c. deles é o produto desses números. |
Nenhum comentário:
Postar um comentário